In a preferred embodiment, a threaded rotor for a linear actuator, including: a generally cylindrical, metallic shell/insert (20); and a generally cylindrical threaded thermoplastic member (72) disposed in a wall of the generally cylindrical shell/insert, the threaded thermoplastic member having threads formed on an inner surface thereof and engageable with complementary threads formed on an outer surface of a shaft to be inserted in the generally cylindrical shell/insert.
INJECTION MOLDED THREADED ROTOR AND MANUFACTURE METHOD

CROSS-REFERENCE TO RELATED APPLICATION

The present application is a 371 of PCT Application No. PCT/01/000749, filed Jan. 10, 2001. Benefit is claimed of the filing date of United States Provisional Application No. 60/179,448, filed Feb. 01, 2000, and titled INJECTION MOLDED THREADED ROTOR FOR LINEAR ACTUATOR.

TECHNICAL FIELD

The present invention relates to rotors generally and, more particularly, but not by way of limitation to a novel injection molded threaded rotor for linear actuator.

BACKGROUND ART

One type of linear actuator is constructed by providing a threaded rotor inside an electric motor A complementarily threaded lead screw is inserted through the rotor and rotor rotation causes the lead screw to selectively advance linearly in one direction or the other depending on the direction of rotation of the rotor. One family of electric motors used in such applications is the step motor or more specifically, the hybrid step motor.

The traditional method of manufacturing a threaded rotor is to machine the threaded rotor portion of the motor from a bearing type material, such as bronze. This is a very labor intensive and costly operation for a number of reasons, among which are:

1. Raw material is generally costly and there is a substantial amount of waste.

2. Often, the thread form used is an acme thread and proper machining of the threads requires several operations.

3. Materials that are good bearing materials do not necessarily machine easily, a good example being bronze.

In addition the process of machining these components produces parts that do not perform efficiently due to the generally poor surface finish of cut threads.

In other applications, it is common to use a thermoplastic material for the rotor, the thermoplastic material incorporating solid lubricants such as PTFE or silicone for increased efficiency. Often, these parts use threads that are formed by injection molding. This creates a more efficient thread form, due to the better surface finish. Unfortunately, the extension (s) of the threaded portion that create one or more bearing surfaces are not stable when formed of thermoplastic.

Consequently, it would be desirable to have a compound rotor that had the favorable characteristics of a thermoplastic threaded rotor, such as low coefficient of friction of the thermoplastic, with the stability of metal in the critical bearing journal area(s).

Accordingly, it is a principal object of the present invention to provide a compound rotor for a linear actuator that has an injection molded thermoplastic threaded portion, but with one or more bearing journal areas formed of metal.

It is a further object of the invention to provide such a compound rotor that can be easily and economically manufactured.

It is another object of the invention to provide such a compound rotor that can be produced in part, in an unscrewing mold.

Other objects of the present invention, as well as particularly features, elements, and advantages thereof, will be elucidated in, or be apparent from, the following description and the accompanying drawings.

DISCLOSURE OF INVENTION

The present invention achieves the above objects, among others, by providing, in a preferred embodiment, a threaded rotor for a linear actuator, comprising a generally cylindrical, metallic shell/insert; and a generally cylindrical threaded thermoplastic member disposed in a wall of said generally cylindrical shell/insert, said threaded thermoplastic member having threads formed on an inner surface thereof and engangeable with complementary threads formed on an outer surface of a shaft to be inserted in said generally cylindrical shell/insert.

BRIEF DESCRIPTION OF DRAWINGS

Understanding of the present invention and the various aspects thereof will be facilitated by reference to the accompanying drawing figures, provided for purposes of illustration only and not intended to define the scope of the invention, on which.

FIG. 1 is side elevational, cross-sectional view of a shell/insert according to the present invention.

FIG. 2 is an isometric, cross-sectional view of the shell/insert of FIG. 1.

FIG. 3 is a side elevational view of a mold in which the rotor of the present invention has been completed.

FIG. 4 is a side elevational view of a completed rotor of the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

Reference should now be made to the drawing figures on which similar or identical elements are given consistent identifying numerals throughout the various figures thereof, and on which parenthetical references to figure numbers should be made. The reader(s) to whom the element(s) being described is (are) best seen, although the element(s) may be seen on other figures also.

FIGS. 1 and 2 illustrate a generally cylindrical shell/insert, constructed according to the present invention, and generally indicated by the reference numeral 10. Shell/insert 20 includes first and second bearing areas 30 and 32 and it will be understood that the first and second bearing areas will be journaled in bearings in the motor of which shell/insert becomes a part. It will also be understood that only one of bearing areas 30 and 32 may be provided and, thus, the present invention may be used in a motor having only one bearing structure. Shell/insert also includes a central portion 40, intermediate bearing areas 30 and 32, and having therein four, axially extending, equally radially spaced slots 42 (only three shown on FIG. 1 and two shown on FIG. 2) defined through the wall thereof. Slots 42 provide retention and location features for an injection molded threaded portion, as will be seen with reference to FIGS. 3 and 4. A fewer or greater number of slots may be provided within the contemplated of the present invention.

Shell/insert is machined from an easily machineable material such as brass using conventional machining techniques.

Referring now to FIG. 3, there is illustrated a mold, generally indicated by the reference numeral 50 and having first and second sections 52 and 54. Shell/insert 20 is disposed in mold 50. A locking core pin 60 has been inserted.
metallic shell/insert, said threaded thermoplastic member having threads formed on an inner surface thereof and engageable with complementary threads formed on an outer surface of a shaft to be inserted in said generally cylindrical, metallic shell/insert.

2. A threaded rotor for a linear actuator, as defined in claim 1, further comprising: at least one slot formed in said wall of said generally cylindrical, metallic shell/insert into which a portion of said threaded thermoplastic member extends outwardly to prevent relative axial and radial movement of said threaded thermoplastic member in said generally cylindrical, metallic shell/insert.

3. A method of manufacture of a threaded rotor for a linear actuator, comprising:

(a) machining a generally cylindrical shell/insert having two bearing areas;
(b) placing said generally cylindrical shell/insert in a mold; and
(c) injecting a thermoplastic material into said mold such as to form a threaded thermoplastic member disposed in a wall of said shell/insert, said threaded thermoplastic member having threads formed on an inner surface thereof and engageable with complementary threads formed on an outer surface of a shaft to be inserted in said generally cylindrical shell/insert to permit some of said thermoplastic material to extend outwardly therein to prevent rotation of said threaded thermoplastic member in said shell/insert.

4. A method of manufacture of a threaded rotor for a linear actuator, as defined in claim 3, wherein said step of injecting includes injecting said thermoplastic material into at least one slot formed in said generally cylindrical shell/insert to permit some of said thermoplastic material to extend outwardly therein to prevent rotation of said threaded thermoplastic member in said shell/insert.

5. A method of manufacture of a threaded rotor for a linear actuator, as defined in claim 4, further comprising the step of inserting into said generally cylindrical shell/insert, before insertion of said shell/insert into said mold, a locking core pin and a threaded locking core pin, a thread on said threaded locking core pin forming a thread on said threaded thermoplastic material when said thermoplastic material is injected into said mold.

6. A method of manufacture of a threaded rotor for a linear actuator, comprising:

(a) machining a generally cylindrical shell/insert having two bearing areas;
(b) placing said generally cylindrical shell/insert in a mold;
(c) injecting a thermoplastic material into said mold such as to form a threaded thermoplastic member disposed in a wall of said shell/insert, said threaded thermoplastic member having threads formed on an inner surface thereof and engageable with complementary threads formed on an outer surface of a shaft to be inserted in said generally cylindrical shell/insert, and injecting said thermoplastic material into at least one slot formed in said generally cylindrical shell/insert to permit some of said thermoplastic material to extend outwardly therein to prevent rotation of said threaded thermoplastic member in said shell/insert; and
(d) inserting into said generally cylindrical shell/insert, before insertion of said shell/insert into said mold, a locking core pin and a threaded locking core pin, a thread on said threaded locking core pin forming a thread on said threaded thermoplastic material when said thermoplastic material is injected into said mold.

* * * * *